
Improving Software Development by using Safe Object 
Oriented Development : OTCD 

Xavier Méhaut, Pierre Morère 

Ada & Safety Skill Center 

 
AONIX 

66-68 avenue Pierre Brossolette  
F-92247 Malakoff - FRANCE 
xavier.mehaut@aonix.fr 
pierre.morere@aonix.fr

Abstract. Starting in early 90’s with the first COTS certifiable executive (C-
SMART), and continuing through the end of the decade with the first certifiable 
implementation of the Ravenscar profile (ObjectAda Raven™), Aonix has had 
a long history of experience in Ada language based Safety Critical applications, 
especially in transportation (avionics or rail). Aonix has developed a solution 
which takes advantage of a fully object oriented approach related to three major 
emerging trends in this domain: the use of Object Oriented methodology (in 
analysis, design and coding) in the real-time embedded market, the birth of new 
areas for certification such as the space industry (for both ground-based and on-
board missions) and the increasing complexity of the applications which need 
to be certified. The main point of this process is called OTCD- Optimized 
Technique for Certification of Dispatching. This paper explains the main phases 
of the process and the potential cost reduction benefits. 

Introduction 

The use of an Object Oriented approach is not new in embedded mission critical 
applications. Some companies in the military aircraft, space, and ground 
transportation industries have used and continue to use an OMT or HOOD design 
approach[8], although the use of Ada83 features during implementation may not 
allow those companies to translate their designs in straightforward and natural ways. 
With Ada95, there exists greater traceability between the design and the 
implementation (eg. benefiting from the use of data extension features). Aonix has 
been involved in several certification projects and in particular in the SAE (Safe Ada 
Executive) project which is currently in use on the ATV (Automatic Transport 
Vehicle) under the name T-SMART [1]. Aonix is now working on a definition of a 
UML subset and an extension to the Ada95 subset known as the Ravenscar’s Profile 
[2]. In this paper we will first describe the state of art regarding the use of object 
oriented in Safety Critical system. In a second step we will present a simple system 
used for the purpose of illustration. We will describe the current way to implement 



this kind of system using Ada83 approach. We will propose an implementation using 
new Ada95 features. We will compare the two kinds of implementation. Finally, we 
will describe the OTCD approach; an approach primarily designed for applications 
needing to be certified at the highest levels (Level A and B of DO-78B [3],  or SIL 4 
and SIL 3 of EN-50128 [4]).  

Use of Object Oriented Programming in Safety Critical System 

1994 [4] points out that with regard to safety aspects, it is not clear whether object-
oriented languages should be preferred to conventional ones. It is amazing to note that 
6 years later this is still not clear. On the one hand, the use of abstraction and 
encapsulation is fully accepted and even highly recommended in several standards or 
norms. On the other hand, the use of any non-deterministic and dynamic feature 
linked to object-oriented programming is forbidden. Therefore, 
constructors/destructors as well as dynamic object creation are not allowed. Moreover 
the use of access types is restricted to static structures only. 

Today the Ada community agrees on the fact that the dynamic features of Ada95 
should be excluded for use in High Integrity Applications [9]. Nevertheless a large 
number of applications which use these kinds of features have been certified. This is 
due to the fact that some of these feature are safe as a result of special implemention 
characteristics. In general, high level restrictions (based on language semantics) may 
be eased due to implementation details. In this paper we will see how an a-priori 
forbidden feature (dynamic dispatching) might be used because the characteristics of 
its implementation. 

Object Oriented System Description  

The implementation of a protocol has been chosen in order to illustrate the advantages 
of using Object Oriented programming for improving the software development 
process. Two distant systems communicate through a message passing mechanism. 
The messages may be of various lengths, containing different kinds of frames (see Fig 
1.).  
 



Fig. 1. UML Classes diagram 

Development without dispatching 

There are several features in Ada83 which support Object Oriented Design such as, 
encapsulation and abstraction (private and limited types), polymorphism (overloading 
of subprograms) and inheritance without data extension (derived types). In order to 
ensure upward compatibility these features have been kept in Ada95. The use of 
unconstraint records with discriminants with default values can be used to implement 
type hierarchies. The use of such a feature requires a specific approach with respect to 
certification. This is mainly due to compiler behavior. For instance, during the life of 
the application, it is possible for objects declared with discriminants with default 
values to undergo structural changes as a result of complete assignments. Given the 
fact that the size of such objects can change, a compiler might choose to create these 
objects : 
1. in the heap : If the size changes, the compiler allocates a new structure and frees 

the old one. Of course such a solution is forbidden for use in safety applications. 
For this reason, this kind of type is not permitted to be used in high integrity 
software. 

2. on the stack : The maximum size is allocated on the stack, and all the structural 
changes of the object are done in this area. Of course this solution is memory 



consuming, but with such an approach, the use of these kinds of types is allowed 
by the certification authority. 

In the solution explained hereafter, we assume that the second solution1 is supported 
by the compiler, and is acceptable to the certification authority.  

First Version 

The code of the high level package which describes the frame type is the following. 

package All_Frames is  

 type Frame_Kind is (Frame_1, Frame_2); 

 type Frame (Kind : Frame_Kind := Frame_1) is record  

 Id : Integer; 

 case Kind is 

 when Frame_1 => B : Boolean; 

 when Frame_2 => K : Integer; 

 end case;             

 end record; 

 type Index is range 1 .. 2;  

 type Frames_Set is array (Index) of Frame; 

 procedure Code (F : in Frame);  

end All_Frames; 

For objects of type Frame_Set, the maximum size is used for each component of 
Frame type. This solution is memory consuming but allows the declaration of arrays 
with component of variable size. 

Evolution 

In order to accommodate the introduction of a new kind of frame, the enumerated 
type used for the definition of the record needs to change. This implies a 

1 A compiler could use these two approaches, for example in AdaWorld cross 68k (Aonix 
compilers), transient records with a maximum size less than 8 kilo-bytes are allocated on the 
stack whereas objects with a maximum size greater than 8 kilo-bytes are allocated in the 
heap. A technical note on this subject is available upon demand. 



recompilation of the entire system, and all the code needs to be re-tested. One 
consequence of such an approach is that those objects which require no functional 
changes are also impacted by this change. This impact is shown in the following 
figure. 

Fig. 2. Dependence graph for Ada83 implementation of the protocol sample 

Using new Ada95 features 

Ada95 provides new functionality  such as tagged type (equivalent to the class notion 
in C++), inheritance, polymorphism and dispatching. The polymorphism is the fact 
that the same operation may behave different on different object classes. In 
conjunction with polymorphism the notion of dispatching is supported by Ada95. The 
dispatching is the capability to call the correct depending on the actual type of an 
object addressed through an access. The dispatching could be static (the actual type of 
the object is known at compile time) or dynamic (the actual type of the object is 
known at execution time). In the following implementation we will use all these new 
features. 

First Version 

The design implementation is conceived in such a way as to minimize the dependence 
between Ada units (see Fig 3). This is achieved for example, by introducing an 
abstract type which encompasses all the attributes and methods common to all frames 
and the methods that will be used to encode and decode messages. 



Fig. 3. Dependence graph for Ada95 implementation of the protocol sample 

Only the code for the units directly involved in the main subprogram : Root_Frames, 
DB (for DataBase) and Test_Poly is given 
� Root_Frames specification package : 

package Root_Frames is  

 type Frame is abstract tagged record  

 Id : Integer; 

 end record; 

 -- use for the dispatching 

 type A_Frame is access all Frame’Class; 

 type Index is range 1 .. 2; 

 type Frames_Set is array (Index) of A_Frame; 

 procedure Code (M : in Frame);     

end Root_Frames; 

 

� DB specification package 
 

with Root_Frames;use Root_Frames; 



with Init; use Init; 

package DB is     

 Table : constant Frames_Set :=Init_Message_Array; 

end DB; 

� Test_Poly subprogram body : 

with DB; use DB; 

with Root_Frames;use Root_Frames; 

procedure TestPoly is  

 PA : A_Frame; 

begin 

 for I in Table’Range loop 

 PA := Table (I); 

 Code (PA.all); 

 end loop;     

end; 

In the Test_Poly main program, the correct Code subprogram is chosen at runtime 
using the tag of the object which is managed by the compiler.   

Evolution 

Adding a new kind of frame implies only a modification of the package body Init. 
The units which have not been modified do not need to be re-tested (unitary, 
functional, coverage tests). - with the exception of Test_Poly. For this unit, we need 
only to test that the new kind of frame is properly handled. In this simple sample, only 
one unit out of nine need be revalidated. The same evolution using the Ada83 solution 
implies a new complete validation of the application. 

Comparison between the two Implementations 

Although the first implementation is still used in Ada95, we will call it the Ada83 
solution. We have chosen several criteria covering the entire life cycle. 



Traceability: both solutions provides good traceability between the design and the 
code. Nevertheless the Ada95 solution allows a better mapping between a UML class 
and an Ada class which is defined in only one package.  
Modularity: in the Ada83 solution a message needs to have access to the definition 
of the frame. In general this implies the creation of a large package containing all the 
type definitions needed for the declarations of the Message type.   
Performance: the dispatching code of Ada98 is faster than the code used in the 
Ada83 implementation. 
Control flow determinism: the Ada83 implementation is fully deterministic. The 
Ada95 implementation requires the use of procedure addresses. 
Execution determinism: with the Ada95 solution the time needed to execute the call 
to the correct operation (depending on the actual type of the object) is constant. This 
is not the case with the Ada83 solution where the execution time for the selection of 
the correct operation depends on the evaluation order within the case statement. 
Maintainability: the Ada95 solution provides better maintainability as a result of the 
loose coupling modules. 
Certification: the main advantage of the Ada83 solution is that several applications 
using this approach have been previously certified.  
Miscellaneous: Another advantage of the Ada95 solution is its look &feel is familiar 
to developers who are used to using other Object-Oriented  Programming languages 
such as C++. 
 
As this short non-exhaustive list shows, the main inconvenience of an Ada95 
implementation is that it is a new approach whose dynamic aspects are not 
sufficiently field tested to give confidence to certification authorities. OTCD is a 
technique which solves this issue by reducing the dynamic aspects of the approach. 

 

OTCD Optimized Technique for Certification of Dispatching 

OTCD is based on a knowledge of ObjectAda code generation. The use of this 
technique has an impact on both the design of the system as well as on the coding 
phase of development. The main steps are explained hereafter, the whole approach is 
available upon demand.  

Design and coding 

There are two main aspects which need to be taken into account during the design 
phase. The first one is limiting the dependence between data structures and various 
units. The second one is the handling of static data. The OTCD approach implies that 
each object subject to dispatching is accessed through reference rather than directly. 
The link between the message and the frame is created during the elaboration phase of 
execution, this is done in order to reduce dependencies between units and to avoid 
unnecessary recompilation. With such an approach, the implementation of a Message 
object is functionally equivalent to a large static structure (contiguous representation) 



which declares all the potential frames within. This kind of representation is not 
compatible with the dispatching capability of Ada95.   

Fig. 4. Comparison between two ways to implement composition 

Static Verification  

Static verification of the program, requires generating the assembly file corresponding 
to the Ada units. For example, the following code, using ObjectAda Raven for 
PowerPC, is generated for the Root_Frames.Frames_1 specification package. 

 
# ************* Constant segment : 
 |                        .align 8                   
 |                        .global root_frames__frames_1__frame_1___dispatch_table   
 | 000000          root_frames__frames_1__frame_1___dispatch_table:    
 |                        .word    root_frames__frames_1__frame_1___expanded_name  
 |                        .word    root_frames__frames_1__frame_1___external_tag  
 |                        .word    root_frames__frames_1__frame_1___ancestor_table  
 |                        .word    root_frames__frames_1__frame_1___su_size  
 |                        .word    0x00000000        
 |                        .word    0x00000000        
 |                        .word    root_frames__frames_1__frame_1___equal  
 |                        .word    root_frames__frames_1__frame_1___assign  
 |                        .word    0x00000000        
 |                        .word    0x00000000        
 |                        .word    0x00000000        
 |                        .word    0x00000000        
 |                        .word    root_frames__frames_1__code__2  
 Fig. 5. Constant section used for the support of dispatching operations 

 



This table needs to linked to the code generated for the dispatching operation done in 
the test_poly subprogram. The root_frames__frames_1__code_2  is located at the 
offset 48 of the constant section known under the generic name of "dispatch table". 

 
# Source Line # 8 Code (PA.all); 
 8| 00003C 80610008        lwz      r3,8(sp)         # STATIC_FRAME_SEG PA 
 8| 000040 90610010        stw      r3,16(sp)        # STATIC_FRAME_SEG 
 8| 000044 81810010        lwz      r12,16(sp)       # STATIC_FRAME_SEG 
 8| 000048 81610010        lwz      r11,16(sp)       # STATIC_FRAME_SEG 
 8| 00004C 814B0000        lwz      r10,0(r11)        
 8| 000050 812A0030        lwz      r9,48(r10)        
 8| 000054 386C0000        addi     r3,r12,0          
 8| 000058 7D2903A6        mtspr    ctr,r9            
 8| 00005C 4E800421        bctrl                      

Fig. 6. Code generated for the dispatching operation 

In the above code the offset used in order to call the correct subprogram is not 
computed but is hardcoded. This is due to the technology of the ObjectAda compiler 
(and is platform-independant). It is easy to verify, in a static way, that all the offsets 
correspond to the correct offset in the constant table. This is very important because 
one of the issues when using class type programming and dispatching in high integrity 
software, as pointed out in [6], is that no static analysis can be in such a case. Using 
OTCD, the data structures are static, the dispatching tables are static and the offsets 
are known at compile time.  

Test 

Of course code coverage should be performed in conjunction with static verification,. 
This code coverage needs to be performed at the assembly level as mandated in 
chapter 6.2.4 of [3] in order to be compliant with the level A of criticality. This can be 
achieved by using a qualified tool such as AdaCover2 which is fully integrated with 
ObjectAda Raven technology. One should note that that the generated low level code 
is sequential, greatly simplifying the coverage test design. The complexity of testing 
(and of verification) can be compared to the complexity involved in an Ada83 like 
approach.  In the integration phase, the tests need to verify that correct coverage is 
achieved regarding the actual contents of a message. In case of modification only the 
new class need be tested. 

Conclusion 

OTCD allows for an incremental approach for developing safety related software 
while streamlining cumbersome testing phases at each development iteration. This 

2 AdaCover is a coverage tool qualified against the DO-178B to the CC2 level. 



approach is mainly suitable for applications which are data oriented (protocol, data 
base) and which have a degree of predictability in their future modifications. Using 
dispatching (as described by OTCD) enables direct traceability between design (eg 
using UML) and implementation. OTCD also exists for less critical systems whose 
rules are relaxed in regards to low level coverage and data organization.  
It is important to note that the generation of static offsets guaranteed by the 
ObjectAda technology is linked to the fact that Ada95 does not explicitly support 
multiple inheritance (see [7]). For other object oriented languages which support 
multiple inheritance, the offset can not be known at compile time and so no static 
analysis may be performed.  
Related work is currently underway by Aonix in order to describe OTCD as a 
certifiable design pattern and to associate this approach with a specific test design 
pattern. 

 
1. Morère, P.: Certifiable Multitasking Kernel: from T-SMART to Raven, DASIA'99, Lisboa 

99 
2. Dobbing, B.: Real-Time and High Integrity Features of Ada95 using Ravenscar Profile, 

Ada-Belgium'98, Decmber 1998 
3. DO-178B/ED-12B, « Software considerations in airborne systems and equipment 

certifications », RTCA/EUROCAE, December 1992. 
4. EN 50128, “Software for railway control & protection systems (CENELEC).” 
5. « Ada 95 Reference Manual », International Standard ANSI/ISO/IEC-8652:1995, January 

1995. 
6. "Ada 95 Quality and Style: Guidelines for Professional Programmers"SPC-94093-CMC 

Version 01.00.10 October 1995 AJPO. 
7. "Ada 95 Rationale", January 1995, Intermetrics. Inc 
8. Méhaut, X. and Richard-Foy, M.: Enhancing critical software Development using 

HOORA/HOOD and UML/ROOM, DASIA’99, Lisboa 99 
9. HRG Working Group: [GUIDANCE] “Guidance for the use of the Ada Programming 

Language in High Integrity Systems” September 1997 
 


